Exact Regeneration Codes for Distributed Storage Repair Using Interference Alignment
نویسندگان
چکیده
The high repair cost of (n, k) Maximum Distance Separable (MDS) erasure codes has recently motivated a new class of codes, called Regenerating Codes, that optimally trade off storage cost for repair bandwidth. On one end of this spectrum of Regenerating Codes are Minimum Storage Regenerating (MSR) codes that can match the minimum storage cost of MDS codes while also significantly reducing repair bandwidth. In this paper, we describe Exact-MSR codes which allow for any failed nodes (whether they are systematic or parity nodes) to be regenerated exactly rather than only functionally or information-equivalently. We show that Exact-MSR codes come with no loss of optimality with respect to random-network-coding based MSR codes (matching the cutset-based lower bound on repair bandwidth) for the cases of: (a) k/n ≤ 1/2; and (b) k ≤ 3. Our constructive approach is based on interference alignment techniques, and, unlike the previous class of random-network-coding based approaches, we provide explicit and deterministic coding schemes that require a finite-field size of at most 2(n− k).
منابع مشابه
Distributed Data Storage with Minimum Storage Regenerating Codes - Exact and Functional Repair are Asymptotically Equally Efficient
We consider a set up where a file of size M is stored in n distributed storage nodes, using an (n, k) minimum storage regenerating (MSR) code, i.e., a maximum distance separable (MDS) code that also allows efficient exactrepair of any failed node. The MDS property ensures that the original file can be reconstructed even if any n− k storage nodes fail. When a node fails, a new node collects data...
متن کاملOn the Existence of Optimal Exact-Repair MDS Codes for Distributed Storage
The high repair cost of (n, k) Maximum Distance Separable (MDS) erasure codes has recently motivated a new class of codes, called Regenerating Codes, that optimally trade off storage cost for repair bandwidth. In this paper, we address bandwidth-optimal (n, k, d) Exact-Repair MDS codes, which allow for any failed node to be repaired exactly with access to arbitrary d survivor nodes, where k ≤ d...
متن کاملImproving the Secrecy of Distributed Storage Systems using Interference Alignment
Regenerating codes based on the approach of interference alignment for wireless interference channel achieve the cut-set bound for distributed storage systems. These codes provide data reliability, and perform efficient exact node repair when some node fails. Interference alignment as a concept is especially important to improve the repair efficiency of a failed node in a minimum storage regene...
متن کاملExact-Regeneration Distributed Storage Codes
Characterizing the exact repair storage-vs-repair bandwidth tradeoff for distributed storage systems remains an open problem for more than five storage nodes. Motivated by the prevalence and practical applicability of linear codes, the exact repair problem when restricted to linear codes is considered. The main result of this paper is a new approach to develop bounds for exact repair distribute...
متن کاملCentralized Multi-Node Repair Regenerating Codes
In a distributed storage system, recovering from multiple failures is a critical and frequent task that is crucial for maintaining the system’s reliability and fault-tolerance. In this work, we focus on the problem of repairing multiple failures in a centralized way, which can be desirable in many data storage configurations, and we show that a significant repair traffic reduction is possible. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1001.0107 شماره
صفحات -
تاریخ انتشار 2009